
The 25th International Conference on Auditory Display (ICAD 2019) 23–27 June 2019, Northumbria University

SONIFICATION WORKSTATION

Sean Phillips

Media Arts and Technology Department
University of California Santa Barbara

Goleta, CA USA
seanphillips@ucsb.edu

Andrés Cabrera

Media Arts and Technology Department
University of California Santa Barbara

Goleta, CA USA
andres@mat.ucsb.edu

ABSTRACT
Sonification Workstation is an open-source application for gen-
eral sonification tasks, designed with ease-of-use and wide ap-
plicability in mind. Intended to foster adoption of sonification
across disciplines, and increase experimentation with sonification
by non-specialists, Sonification Workstation distills tasks useful
in sonification and encapsulates them in a single software envi-
ronment. The novel interface combines familiar modes of nav-
igation from Digital Audio Workstations, with a highly simpli-
fied patcher interface for creating the sonification scheme. Fur-
ther, the software associates methods of sonification with the data
they sonify, in session files, which will make sharing and repro-
ducing sonifications easier. It is posited that facilitating exper-
imentation by non-specialists will increase the potential growth
of sonification into fresh territory, encourage discussion of soni-
fication techniques and uses, and create a larger pool of ideas
to draw from in advancing the field of sonification. Source
code is available at https://github.com/Cherdyakov/sonification-
workstation. Binaries for macOS and Windows, as well as sample
content, are available at http://sonificationworkstation.org.

1. INTRODUCTION

When referring to sonification applications we mean finished soft-
ware programs targeting end-users, with a focus on creating sonifi-
cations. A broad definition of sonification is best for our purposes,
and “the technique of rendering sound in response to data and
interactions,” which is found in section 1.1 of The Sonification
Handbook is suitable [1]. This includes methods which convert
data samples directly into amplitudes, known as audification and
sometimes treated separately.

Comprehensive figures on the software used in sonification
research are not readily available, but in 2012 Bearman and Brown
reviewed 51 articles on sonification and found domain-specific pro-
gramming languages to be the most common tools [2]. Their survey
found Supercollider [3] and Pure Data [4] to be especially popular,
with Supercollider leading the way amongst research published
in The Proceedings of the International Conference on Auditory
Display (ICAD) [5]. This is despite the existence of multiple sonifi-
cation applications.

Sonification tools can generally be placed on a spectrum from
most to least flexible, which usually correlates with the degree

This work is licensed under Creative Commons Attribution Non
Commercial 4.0 International License. The full terms of the License are
available at http://creativecommons.org/licenses/by-nc/4.0

Figure 1: Sonification tools on a conceptual spectrum, illustrating a
common trade-off between flexibility and ease-of-use.

of complexity and therefore has an inverse relationship with ac-
cessibility to novices. On one extreme of this spectrum are the
general-purpose programming languages. Domain-specific pro-
gramming languages fall along the middle of this spectrum, while
at the other extreme are found end-user applications dedicated to
creating data sonifications.

End-user applications have been designed to sonify specific
data types [6], but we are concerned here with applications designed
for general sonification tasks. This implies applications which
can load datasets of assorted sizes, sonify them in multiple, user-
selected ways, and which place few restrictions on what the dataset
represents. The given criteria still allow for a wide range of software
types and a handful have been tested over the years, though few
appear to be actively under development.

2. RELATED WORK

This section briefly describes some of the more significant, dedi-
cated sonification applications that have been developed.

2.1. Sonification Sandbox (2003)

Sonification Sandbox was “motivated by the need for a multi-
platform, multi-purpose toolkit for sonifying data” [7]. The pro-
gram generates MIDI output, rather than audio. The graphical
interface provides tabs for viewing the data, altering the param-
eter mappings, and adding context. In a sonification, context is
non-signal information added to the output to help the listener in-
terpret what they hear, analogous to the axes and trend lines on a
visual graph [1]. In the Sonification Sandbox these context cues
can include reference pitches for comparing to data values and
click tracks to assist in interpreting time. The software is in beta
and hasn’t been updated for newer versions of Java, but it is still



The 25th International Conference on Auditory Display (ICAD 2019) 23–27 June 2019, Northumbria University

available for download at the Georgia Tech School of Psychology
website [8].

2.2. SonART (2003)

The SonART toolkit used The Synthesis ToolKit (STK) [9] for syn-
thesis and audio output, but added a scheduler and “parameter
matrix engine,” in an effort to provide cross-platform GUI tools
for auditory display [10]. Akin to an audio matrix router in oper-
ation, the parameter matrix arrayed data parameters along the top
of a 2D matrix and synthesis parameters down the right-hand side.
This matrix arrangement allowed for arbitrary mapping of data
to control parameters. The original paper proposes an ambitious
long-term plan, with stated goals of “laying the foundation for an
ongoing open-source collaborative effort,” and “establishing and
maintaining a well-documented and publicly accessible repository
of sonification development tools.” However, looking at internet
archives, it appears the only download link for SonART dates to
2004 or earlier, not long after publication. Unfortunately, the down-
loads are no longer available [11]. The paper describes SonART as
cross-platform and seems to contain screenshots from a Windows
build, but it was not ultimately released for that platform.1 SonART
emphasized image sonification over general sonification tasks in
the final release.

2.3. xSonify (2006)

NASA’s xSonify was developed to sonify one-dimensional space
physics data [12]. This makes it narrower in scope than other
programs under consideration, but it still targets many datasets
and has a history of practical application that makes it interesting.
xSonify offers pitch, loudness, and rhythm modes, and some data
pre-processing. xSonify includes text-to-speech facilities for menu
navigation and a strong focus of the project has been accessibility
for the visually-impaired. Co-author of the original xSonify paper
Wanda L. Diaz Merced is blind and has used sonification in her
physics research for many years [13, 14]. Merced also used a proto-
type of xSonify with visually-impaired students at the University of
Puerto Rico [12]. xSonify is available at the Sonification Research
page of NASA’s website [15].

2.4. Sonifyer (2008)

Sonifyer is meant to be an easy-to-use sonification program, acces-
sible even to amateurs. The authors became interested in such a
project while sonifying EEG data with the Max/MSP [16] frame-
work, writing that their Max sonification system became increas-
ingly difficult to teach newcomers as it grew in complexity [17].
They also noted the steep learning curve of Supercollider, which
they acknowledged as a popular sonification tool. Sonifyer is an
effort to bring the user-friendliness of consumer software to the
sonification space, including easy availability and installation, cit-
ing iTunes as a benchmark example. The original paper on Sonifyer
also stressed the need for a more active community and easy sharing
of sonifications. To address such needs the authors introduced a
companion website alongside Sonifyer, which they hoped would
provide a place to share audio samples and community knowledge.
As of this writing the Sonifyer website appears to have very little
content posted after 2009, and no samples posted after 2011 [18].
Curiously for a project aimed at wide adoption, Sonifyer will not

1J. Berger, personal communication, September, 2017

function without obtaining a license from the makers via e-mail, and
is available only for macOS. Sonifyer provides audification (which
appears to be a strong suit) and limited FM parameter-mapping
sonification.

2.5. Rotator (2016)

Rotator was created at MIT by Juliana Cherston [19]. It is a client-
side web application, written in JavaScript, React, and Flux. It
has a novel interface, which allows for visualization and sonifica-
tion of multiple data streams at the same time. The software is
aimed at “diversifying the way that users distribute data across their
senses” [19, 20]. Rotator assumes the data has a geometric rela-
tionship and a user-provided schematic of the data origin-points is
the key UI component. Users place bounding boxes around clusters
of data streams on the schematic; one bounding box dictates the
streams currently being visualized, another dictates the streams be-
ing sonified. The two boxes are fully independent and can overlap
or delineate exclusive areas of the schematic. There are six synthe-
sis possibilities, including audification. The Rotator project was
largely for experimentation and is not under active development at
the time of writing.2

3. SONIFICATION WORKSTATION

3.1. Motivation

The preceding overview of existing sonification software should
help clarify motivations for the Sonification Workstation project.
The state of the field suggests an opening for current work on
sonification applications. Domain-specific programming languages
such as Supercollider and Pure Data have contributed to numerous
publications, and exhibit ongoing development [21, 22]. This con-
trasts with the more experimental nature and limited life-span of
dedicated software, and invites additional efforts in the application
space.

Sonification Workstation is an attempt to capture some of the
utility of the domain-specific language solutions, while providing
the simplified access to established sonification techniques and pro-
cesses sought by prior dedicated software. Additionally, technical
decisions were made to ease ongoing development and hopefully
increase the project’s longevity (see 4.2).

3.2. Application Overview

The Sonification Workstation interface consists of a single window,
divided into two parts; the data view and the patcher view. The data
view is the main user-interface for controlling playback of the data
being sonified, and is analogous to the waveform view in a Digital
Audio Workstation (DAW), such as Pro Tools or Reaper. The
patcher view is where the user creates the synthesis tree that will
determine the character of the sound. These two interfaces work
together to allow data playback, parameter mapping, and synthesis
design, without interrupting the flow of listening and evaluating.

3.2.1. Data View

The data view is populated whenever a new dataset is loaded via the
File menu. Currently, data can be imported from CSV files. CSV
columns are converted to tracks and plotted. Columns are more

2J. Cherston, personal communication, March, 2019



The 25th International Conference on Auditory Display (ICAD 2019) 23–27 June 2019, Northumbria University

Figure 2: Sonification Workstation application window, configured for audification of a three channel seismic dataset at a playback rate of
20,000 data samples per second and using interpolation.

suited to represent individual data dimensions than rows, since
common CSV editors can access only a limited number of columns
in a single CSV file. Such programs will truncate a long series of
values if it is entered in a row. Once loaded, data tracks are assigned
variable names, for use in parameter mapping expressions (see 3.4).

Data is treated as a signal source, and the time domain can be
quickly navigated by mouse. Clicking anywhere along the plotted
data will move the playback cursor, right-clicking and dragging
will create a bounded area for looping playback. Transport controls,
seen directly below the data tracks, provide controls for play/pause,
setting the playback speed, enabling looped playback, and enabling
real-time interpolation between data points during playback. Play-
back speed is equivalent to the number of data points read every
second and scales from zero to audio rate (48kHz). Playback is
synchronized across all tracks, so that each sample of data playback
represents a single point in the dataset, across all dimensions.

3.2.2. Patcher View

One of the important contributions of Sonification Workstation is
providing a flexible way to construct a sonification, without the
need for domain-specific knowledge, by consolidating the main
techniques into a very simple patching interface. With a small set of
synthesis components and the available data mapping and scaling
features (see following sections), Sonification Workstation offers
tools for additive synthesis, subtractive synthesis, frequency and
amplitude (AM and FM) modulation, and audification. Context for
values can be created via fixed frequency oscillators or noise beds.
Context for time can be added with short AD envelopes, triggered
at data playback rate, or synchronizing modulation and playback
rates.

Figure 2 shows a three-track seismic dataset. The patcher

interface has been populated with synthesis components to audify
and pan the three channels. The Audification (AUD) synthesis
components have been maximized (see section 3.4), showing tracks
A, B, and C, have each been mapped to a single AUD component.

3.3. High-Level Synthesis Components

The high-level synthesis components in Sonification Workstation
encapsulate the data mapping and audio settings. The patcher
interface is inspired by domain-specific patcher languages such as
Pure Data and Max, but is quite simple in comparison. There are
fewer than a dozen instantiable types and no differentiation between
mono, stereo, or control signals. A brief description of the existing
high-level synthesis components follows.

The OSC Component
A sinusoidal oscillator. Accepts arbitrary functions mapped to
frequency and optionally scales the frequency value within a
user-selected range.
The AM Component
An amplitude modulator. Will modulate the amplitude of any
parent synthesis component. The frequency accepts arbitrary
mappings and the value can be scaled.
The FM Component
A frequency modulator. Will modulate the frequency of parent
OSC, AM, and FM components. Will also modulate the pan
position of the PAN object. Frequency and depth parameters
accept arbitrary mappings and can be scaled.
The AUD Component
Turns the results of data mappings directly into amplitudes



The 25th International Conference on Auditory Display (ICAD 2019) 23–27 June 2019, Northumbria University

for audification. Values are always scaled within the range
[-1.0,1.0] to prevent clipping and maximize gain.
The PAN Component
Pans the output of connected components in the stereo field.
Pan position accepts arbitrary mappings and can be scaled, but
values are clipped to the range [-1.0,1.0].
The ENV Component
Applies an AD envelope to connected components. Attack and
Decay values accept arbitrary mappings and the values can be
scaled.
The VOL Component
Scales the output of connected components. Accepts arbitrary
mappings and can be scaled. The gain value will be clipped to
the range [-1.0,1.0]. Negative values allow VOL to be used for
phase inversion.
The NSE Component
Generates white, pink, or Brownian noise.
The EQ Component
Biquad filter with mappable resonance and frequency. Switch-
able high-pass, low-pass, band-pass, or notch. Combines with
the NSE Component for subtractive synthesis.
The OUT Component
The root of the synthesis tree, connecting to the OUT Compo-
nent will pass a component’s signal to the audio callback for
output to the computer sound card.

3.4. Parameter Mapping

Sonification Workstation synthesis components accept parameter
mappings in the form of a mathematical expression. Data tracks are
assigned names on import, these names can be used in expressions
as variables and multiple data tracks can be included in the same ex-
pression. Valid mappings are constants (e.g. setting an oscillator to
a fixed frequency of 440Hz), data tracks, or an arbitrary expression
including both. Expressions are evaluated in real-time.

In their minimized state, each high-level synthesis component
is a colored circle with a text identifier. Double-clicking maximizes
the component, revealing controls for mapping and audio settings.
Figure 3 shows four examples of maximized synthesis components
and their settings, clock-wise from top-left these are:

1. A noise generator (NSE), set to generate white noise.

2. An amplitude modulator (AM), with frequency mapped to
the square root of data track A minus data track B. It is
shown modulating the amplitude of the connected oscillator
directly below.

3. An oscillator (OSC), with frequency mapped to the values of
data track C. The oscillator also has scaling enabled, which
will scale the incoming values to fit, in this case, between
100Hz and 800Hz.

4. A pan control (PAN), set to full left.

While not implemented in the current build, the authors are
also interested in adding parameter mapping to the transport. An
earlier version of Sonification Workstation allowed parameters to
control the rate of playback, essentially making time a mappable
parameter.

Figure 3: Maximized synthesis components, showing their data
mapping and audio settings.

3.5. Data Scaling

Synthesis components provide for the scaling of data mappings to
usable values. In Figure 3 the scaling controls can be seen at the
bottom of the maximized AM, OSC, and NSE interfaces. Parameter
scaling is controlled with the following values:

• Scaled: enables scaling. If disabled, the data values are used
as-is. There is no protection against aliasing.

• Scale Low: the lowest output value desired, corresponding to
the lowest data value in an assigned row, or the lowest value
of the assigned expression, given the current dataset.

• Scale High: the highest output value desired, corresponding to
the highest data value in an assigned row, or the highest value
of the assigned expression, given the current dataset.

• Scale Exponent: controls the shape of the curve the data values
are mapped to.

The formula for scaling is taken from the scale object in the
Max programming language [23]. Inverted mappings are also
possible, by setting Scale Low to the top of the desired scale range
and Scale High to the bottom of the range. Inverted mappings have
been identified as useful in cases where increasing data values have
an intuitively inverse relationship to the data, e.g. when size is
mapped to pitch [1].

3.6. Session Files

The state of a session, including the synthesis tree and the path to
the currently loaded dataset, can be saved to a session file. Session
files are .json files, with the dataset path and objects representing
the state of each synthesis component stored in human readable
form. Sharing a session file, together with the dataset, affords
complete reproduction of the sonification and enables collaboration,
modification and experimentation.



The 25th International Conference on Auditory Display (ICAD 2019) 23–27 June 2019, Northumbria University

3.7. Color Scheme

The color scheme for UI elements in Sonification Workstation draws
heavily from the so-called “Kelly colors.” This is a set of 22 colors,
meant to provide maximum contrast for color coding tasks, pub-
lished by Kenneth L. Kelly for the Inter-Society Color Council in
1965 [24]. According to Green-Armytage, the ISCC has worked
recently to bring Kelly’s list up to date, but improving on it was
difficult [25]. Kelly’s list is designed so that the second color pro-
vides maximum contrast with the first, the third color will contrast
maximally with colors one and two, etc. Kelly chose the first nine
colors for their differentiability by individuals with red-green color
blindness.

Major UI elements of Sonification Workstation utilize the first
thirteen colors of the list. While using Sonification Workstation is
not a color coding task per se, the data track view requires color
coding and differentiable colors were desired for all of the synthesis
components. It was not possible to keep to the first nine Kelly
colors, while providing unique colors for each of the synthesis
components. Additionally, multiple neutral shades are used to
provide some organization to the main application window, where
Kelly only provides values for white, black and a single grey. To
further aid users less-sensitive to color differences, all synthesis
components are surrounded by a white ring, providing very high
contrast against the dark background of the patcher view. They are
also labelled with a text-based code that indicates their function.

4. TECHNICAL NOTES

4.1. Processing Rates

The software operates at three different processing rates.

4.1.1. Audio Rate

Audio rate processing happens at the sample rate of the audio
system, which is set to 48,000Hz. This is the rate at which all
synthesis classes generate audio, regardless of the playback rate or
the rate of change in any associated data parameters. If mapped
data parameters are changing more slowly than the audio rate (a
typical case), the synthesis components will generate multiple audio
samples from a single data point.

4.1.2. Command Processing Rate

User commands to sonification components and the transport are
buffered in a lock-free ring buffer, for consumption by the audio
callback, which happens at command process rate. This allows
the user to issue changes to synthesis parameters and data play-
back settings without interrupting audio processing. The command
processing rate is set to the audio block rate, consequently user
commands are processed once for every time the audio buffer is
filled.

4.1.3. Step Rate

Step rate is the rate at which values from the dataset are read and
passed to all synthesis blocks in the patcher view. This is dependent
upon the data sample playback rate, which is set in samples per
second. Therefore, at the default speed of “1”, the step function is
called on every synthesis component once every second. The step
function provides a way for synthesis blocks to take special actions

when new data points are reached. The ENV class, for example,
can re-trigger envelope generation at the step rate.

4.2. Qt Framework

The Sonification Workstation is written in C++, QML, and
JavaScript, using the Qt framework. The graphical front end
is where the QML and JavaScript code resides, while core
classes for synthesis and playback are written in C++. The
current build targets Qt LTS version 5.12 and C++17. Source
code is available at the project’s GitHub repository (source:
https://github.com/Cherdyakov/sonification-workstation). It is
hoped that building with the Qt framework will help ongoing
support and development of Sonification Workstation, since the
framework itself is well-established and receives regular updates.
Additionally, a number of existing sonification applications are
only available for a single platform (see section 2. Related Work),
limiting their potential audience. Targeting the Qt framework and
using cross-platform libraries for synthesis and audio i/o means
that Sonification Workstation can be built for macOS, Linux, and
Windows.

4.3. Gamma Synthesis Library

Most of the high-level patcher objects contain lower-level synthesis
classes, commonly referred to as unit generators. OSC contains an
Oscillator unit generator, ENV contains an envelope unit genera-
tor, and so on. Many unit generators contained in the Sonfication
Workstation synth objects are from the Gamma C++ synthesis li-
brary (source: https://github.com/LancePutnam/Gamma), written
by Lance Putnam [26].

4.4. Mathematical Expression Toolkit

Evaluation of parameter mapping expressions is handled by the
C++ Mathematical Expression Toolkit, written by Arash Partow
(source: https://github.com/ArashPartow/exprtk).

5. TAXONOMIC EVALUATION AND FUTURE WORK

In examining the fitness of the completed project for its purpose,
some criteria must be chosen. Several experts have attempted
to generate sonification taxonomies. It stands to reason that a
successful general purpose sonification application would address
one or more well-considered taxonomies. This section evaluates the
merits and shortcomings of the Sonification Workstation through the
lens of example taxonomies, then notes significant improvements
indicated by this evaluation.

5.1. Functional Taxonomy

Summarizing available research, the Sonification Handbook [1]
describes the following functional categories:

1. Alarms, alerts, and warnings

2. Status, process, and monitoring messages

3. Data exploration

4. Art, entertainment, sports, and exercise

At this point in time, the software addresses category three
most fully, with additional application to the artistic element of
category four.



The 25th International Conference on Auditory Display (ICAD 2019) 23–27 June 2019, Northumbria University

Figure 4: De Campo’s Data Sonification Design Space Map, taken from the original paper. “The overlapping zones are fuzzy areas where
different sonification approaches apply; the arrows on the right refer to movements on the map, which correspond to design iterations.” —
de Campo

Category one, alarms, alerts, and warnings, refers to sounds
which “indicate something has occurred, or is about to occur” or
“require immediate response or attention.” Category two likewise
refers to monitoring things “current or ongoing.” These can be
prototyped in Sonification Workstation using recorded data, but live
streaming of input data is not currently implemented. Real-time
input would be highly desirable for users working on these sorts
of tasks, and sports and exercise sonification could also benefit
from real-time sonification. The project should be expanded in the
future, to incorporate real-time process monitoring and event based
sonification via network messages.

5.2. De Campo’s Sonification Design Space Map

In a 2007 paper [27], de Campo began by classifying sonification
strategies into three categories:

1. Continuous Data Representation

2. Discrete Point Data Representation

3. Model-Based Data Representation

De Campo employed these categories in creating the Data
Sonification Design Space Map. The map is intended as a guide
for choosing sonification strategies, based upon the number of data
dimensions, the number of simultaneous streams, and the number of

data points required to comprise a single “gestalt.” Briefly, number
of streams refers to the number of data dimensions that are sonified
in parallel, either through spatialization or using sonically distinct
frequency ranges per stream, etc., while a gestalt is a perceivable
pattern or recognizable audio structure that is of interest.

De Campo describes the use-case for the Design Space Map this
way: “The Design Space Map enables a designer or researcher to
engage in systematic reasoning about applying different sonification
strategies to his/her task or problem, based on data dimensionality
and perceptual concepts.”

De Campo’s map posits a space in which the sonification de-
signer can move freely between many different techniques and
dataset types. This view of sonification design is highly compatible
with the idea of a generalized sonification application. De Campo
has perhaps provided a map not only for sonification designers, but
for the developers of sonification software as well. The prospect of
a design aid, such as the Design Space Map, combined with a soft-
ware tool meant to realize the methods it describes, is a potentially
exciting development in sonification software design.

Sonification Workstation already incorporates the ability to tran-
sition along the various axes of the Design Space Map. This is not
a coincidence, de Campo’s paper had a strong influence on the cur-
rent project. Realizing the concept of freedom of movement along
these axes is only a starting point however, and specific areas of the



The 25th International Conference on Auditory Display (ICAD 2019) 23–27 June 2019, Northumbria University

map are covered thinly or left unaddressed. Currently, Sonification
Workstation offers parameter mapping, modulation source, filtering,
and audification. Incorporating physical modeling is an intrigu-
ing possibility and it would help cover a large area on the design
map. The challenge would be in incorporating physical modeling
that is applicable to general sonification tasks. Many model-based
sonifications reflect the real properties of an object or physical sys-
tem under study and can be difficult to generalize. Some general
model-based sonification strategies have been offered; Lee, Sell,
and Berger proposed methods based on digital waveguide meshes
[28], while Hermann and Ritter describe a system based on a crys-
tal growth model [29]. Such a method is an excellent candidate
for inclusion in Sonification Workstation, even if experimentally.
Sonification Workstation was designed to be extensible through the
addition of new synthesis components such as these.

6. SUMMARY

The authors have presented the Sonification Workstation, software
uniquely suited to generalized sonification work, with a low bar-
rier to entry. Prior work in this space was presented for context
and the present work was examined in relation to existing sonifica-
tion taxonomies, illuminating the strengths and weaknesses of the
approach, and providing future direction for the project.

7. REFERENCES

[1] Various, The Sonification Handbook, J. G. N. Thomas Her-
mann, Andy Hunt, Ed. Berlin, DE: Logos Verlag Berlin,
2011.

[2] N. Bearman and E. Brown, “Who’s sonifying data and how
are they doing it? a comparison of icad and other venues since
2009,” in Proc. of the 18th Int. Conf. on Auditory Display,
2012, pp. 231–232.

[3] J. McCartney, “Supercollider: A new real time synthesis
language,” in Proc.of the Int. Computer Music Conference,
1996, pp. 257–258.

[4] M. S. Puckette, “Pure data,” in Proc.of the Int. Computer
Music Conference, 1996, pp. 224–227.

[5] http://www.icad.org, accessed: 2017-10-17.

[6] R. A. Khan, R. K. Avvari, K. Wiykovics, P. Ranay, and
M. Jeon, “Lifemusic: Reflection of life memories by data
sonification,” in Proc. of the 22nd Int. Conf. on Auditory Dis-
play, 2016, pp. 90–92.

[7] B. Walker and J. Cothran, “Sonification sandbox: A graphical
toolkit for auditory graphs,” in Proc. of the 9th Int. Conf. on
Auditory Display, 2003, pp. 231–232.

[8] http://sonify.psych.gatech.edu/research/sonification
sandbox/, accessed: 2019-03-29.

[9] P. R. Cook and G. P. Scavone, “The Synthesis ToolKit (STK),”
in Proc. of the Int. Computer Music Conference, 1999, pp.
164–166.

[10] ——, “Sonart: The sonification application research toolbox,”
in Proc. of the 8th Int. Conf. on Auditory Display, 2002.

[11] https://ccrma.stanford.edu/∼woony/software/sonart/, ac-
cessed: 2019-03-29.

[12] R. M. Candy, A. M. Schertenleib, and W. L. D. Merced,
“xSonify sonification tool for space physics,” in Proc. of the
12th Int. Conf. on Auditory Display, 2006.

[13] http://www.npr.org/2017/01/20/510612425/
how-can-we-hear-the-stars, accessed: 2019-03-29.

[14] https://www.cfa.harvard.edu/sed/projects/star songs/pages/
xraytosound.html, accessed: 2017-09-02.

[15] https://spdf.sci.gsfc.nasa.gov/research/sonification/, accessed:
2019-03-29.

[16] M. S. Puckette, “The patcher,” in Proc.of the Int. Computer
Music Conference, 1988, pp. 420–429.

[17] F. Dombois, “Sonifyer: A concept, a software, a platform,”
in Proc. of the 14th Int. Conf. on Auditory Display, 2008, pp.
1–4.

[18] http://www.sonifyer.org/?lang=e, accessed: 2019-03-29.

[19] J. M. Cherston, “Auditory display for maximizing engagement
and attentive capacity,” MIT, 2016.

[20] J. Cherston and J. A. Paradiso, “Rotator: Flexible distribution
of data across sensory channels,” in Proc. of the 23rd Int. Conf.
on Auditory Display, 2017, pp. 86–93.

[21] https://puredata.info/downloads/pure-data, accessed: 2019-
05-27.

[22] https://supercollider.github.io/archive, accessed: 2019-05-27.

[23] https://docs.cycling74.com/max7/maxobject/scale, accessed:
2019-03-29.

[24] K. L. Kelly, “Twenty-two colors of maximum contrast,” Color
Engineering, vol. 110, no. 3, pp. 26–27, 1965.

[25] P. Green-Armytag, “A colour alphabet and the limits of colour
coding,” Colour: Design & Creativity, vol. 5, no. 5, pp. 1–23,
2010.

[26] L. Putnam, “Gamma: A C++ sound synthesis library further
abstracting the unit generator,” in Proc.of the Int. Computer
Music Conference, 2014, pp. 1382–1388.

[27] A. de Campo, “Toward a data sonification design space map,”
in Proc. of the 13th Int. Conf. on Auditory Display, 2007, pp.
342–347.

[28] G. S. K. Lee and J. Berger, “Sonification using digital waveg-
uides and 2- and 3-dimensional digital waveguide mesh,” in
Proc. of the 11th Int. Conf. on Auditory Display, 2005, pp.
140–145.

[29] T. Hermann and H. J. Ritter, “Crystallization sonification of
high-dimensional datasets,” in Proc. of the 8th Int. Conf. on
Auditory Display, 2002, pp. 1–6.


